Characterization of a new membrane from concentrated growth factors associated with denaturized Albumin (Alb-CGF) for clinical applications: A preliminary study
Carlos Fernando de Almeida Barros Mourão1, Ezio Gheno2, Emanuelle Stellet Lourenço3, Renata de Lima Barbosa3, Gregori M Kurtzman4, Kayvon Javid4, Elena Mavropoulos5, Stefano Benedicenti2, Mônica Diuana Calasans-Maia6, Rafael Coutinho de Mello Machado6, Gutemberg Gomes Alves3
1 Department of Molecular and Cell Biology, Institute of Biology, Fluminense Federal University, Brazil; Department of Surgical Sciences and Integrated Diagnostics, University of Genova, Genova, Italy; Department of Oral Surgery, Dentistry School, Federal Fluminense University, Niterói, Brazil 2 Department of Surgical Sciences and Integrated Diagnostics, University of Genova, Genova, Italy 3 Department of Molecular and Cell Biology, Institute of Biology, Fluminense Federal University, Niterói, Brazil 4 Private Clinical Practice, United States 5 Brazilian Center for Physics Research, Rio De Janeiro, Brazil 6 Department of Oral Surgery, Dentistry School, Federal Fluminense University, Niterói, Brazil
Correspondence Address:
Prof. Carlos Fernando de Almeida Barros Mourão Rua Miguel de Frias 9, Icaraí, Niterói, Rio de Janeiro 24220-900
 Source of Support: None, Conflict of Interest: None  | 27 |
DOI: 10.4103/GFSC.GFSC_21_18
|
Background: One of the main issues pertaining to the use of fibrin membranes today, is their clinical efficacy for guided bone regeneration. This requires the need for membrane stability and a controlled resorption that enables the barrier to remain functionally during a relevant clinical time span. Human serum albumin is known to have an impact in the formation and stability of the fibrin networks density and permeability. Therefore, its interaction with fibrin aggregates may provide interesting features to autologous blood-derived biomaterials. Aim: In this context, the present study sought to characterize membranes produced through a modified protocol for concentrated growth factors (CGF) associated with activated plasma albumin gel (APAG). Method: Mixing denaturized albumin with CGF from the same blood samples into glass containers resulted in solid malleable membranes, with a modified denser ultrastructure as revealed by scanning electron microscopy (SEM). Results: The membranes presented a high density of nucleated cells, uniformly distributed along its length, and were able to release growth factors such as PDGF, VEGF, and FGF2 for 7 days. Conclusion: This preliminary study indicates that the protocol may provide autologous moldable and stable biomaterials for use as a soft tissue barrier, offering the basis for further research on its effectiveness for guided tissue regeneration.
|